陈增敬
/Upload/1590758934.png
山东大学教授

人简历

山东大学齐鲁证劵金融研究院院长
山东大学数学学院副院长

研究领域

金融数学、计量经济学、概率统计、导向随机微分方程、保险与精算、数理经济学

教育背景

1983年 毕业于山东师范大学数学系,获理学学士学位。
1988年 毕业于东华大学,获理学硕士。
1998年 毕业于山东大学,获博士学位。

学术兼职

教育部教学指导委员会统计学分委会委员
山东大学金融研究院常务副院长
加拿大 The University of Western Ontario 统计与精算科学系兼职教授
全国概率统计学会理事、全国应用统计学会常务理事

社会荣誉

国家教育部第六批“长江学者”奖励计划特聘教授
国家杰出青年科学基金获得者
国家“百千万人才工程”国家级人选
第十四届孙治方经济科学奖获得者

研究成果

论文:
[1] Z. Chen and R. Kulperger, Minimax pricing and Choquet pricing, to appear Insurance: Mathematics and Economics , 2005.
[2] Z. Chen and R. Kulperger, A stochastic competing species model and ergodicity, to appear Journal of Applied Probability, 2005.
[3] Z. Chen and R. Kulperger, Inequalities for upper and lower probabilities. Statist. Probab. Lett. Vol 73, 3(2005) 233-241.
[4] Z. Chen, T. Chen and M. Davison, Choquet expectation and Peng’s g-expectation. Annals of Probability, Vol.33, No. 3 (2005) 1179-1199.
[5] Z. Chen, R. Kulperger and G. Wei, A comonotonic theorem for BSDEs. Stochastic processes and their applications. 115 (2005) 41–54.
[6] L. Jiang and Z. Chen, A result on the probability measures dominated by g-expectation. Acta Mathematicae Applicatae Sinica, English Series,Vol. 20, No. 3 (2004) 507–512.
[7] L. Jiang and Z. Chen, ON Jensen’s inequality for g-expectation. Chin. Ann. Math. 25B, 3 (2004), 401–412.
[8] Z. Chen, R. Kulperger and J. Long, Jensen’s inequality for g-expectations Part I. C. R. Acad. Sci. Paris Sér. I Math. 337 (2003), No.11, 725-730.
[9] Z. Chen, R. Kulperger and J. Long, Jensen’s inequality for g-expectations Part II. C. R. Acad. Sci. Paris Sér. I Math. 337 (2003), No. 12.
[10] Z. Chen and L. Epstein, Ambiguity, risk, and asset returns in continuous time. Econometrica 70 (2002), No. 4, 1403—1443.
[11] Z. Chen, On existence and local stability of solutions of stochastic differential equations. Stochastic Anal. Appl. 19 (2001), No. 5, 703--714.
[12] Z. Chen and S. Peng, Continuous properties of $G$-martingales. Chinese Ann. Math. Ser. B 22 (2001), No. 1, 115--128.
[13] Z. Chen and B. Wang, Infinite time interval BSDEs and the convergence of g-martingales. J. Austral. Math. Soc. Ser. A 69 (2000), No. 2, 187--211.
[14] Z. Chen and S. Peng, A general downcrossing inequality for g-martingales. Statist. Probab. Lett. 46 (2000), no. 2, 169--175.
[15] Z. Chen, A property of backward stochastic differential equations. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 4, 483--488.
[16] Z. Chen, A new proof of Doob-Meyer decomposition theorem. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 10, 919--924.
[17] Z. Chen, Existence and uniqueness for BSDE with stopping time. Chinese Sci. Bull. 43 (1998), no. 2, 96--99.
[18] Z. Chen and S. Peng, A decomposition theorem of g-martingales. SUT J. Math. 34 (1998), no. 2, 197—208
[19] L. Jun, Z. Chen and Y. Qing, Minimum expectation and backward stochastic differential equations. (Adv. Math) 数学进展,32 (2003), 441—448.
[20] Z. Chen and X. Wang, Comonotonicity of backward stochastic differential equations. Recent developments in mathematical finance (Shanghai, 2001), 28--38, World Sci. Publishing, River Edge, NJ, 2002.
[21] Z. Chen, Generalized nonlinear mathematical expectations: the g-expectations. (Adv. Math.) 数学进展 28 (1999), no. 2, 175—180
[22] Z. Chen, Existence of solutions to backward stochastic differential equations with stopping times. 科学通报42 (1997), no. 22, 2379--2382

欢迎访问东方智库

会员登录 | 免费注册

讲师入驻通道

免费咨询热线:13810808675

热门搜索:部委学者  |  经济学家  |  培训课程  |  周延礼  |  蒋昌建  |  
首页 > 知名专家 > 智库专家 > 查看详情
陈增敬
陈增敬  山东大学教授
人简历 山东大学齐鲁证劵金融研究院院长 山东大学数学学院副院长 研究领域 金融数学、计量经济学、概率统计、导向随机微分方程、保险与精算、数理经济学 教育背景 1983年毕业于山东师范大学数学系,获理学学士学位。 1988年毕业于东华大学,获理学硕士。 1998年毕业于山东大学,获博士学位。 学术兼职 教育部教学指导委员会统计学分委会委员 山东大学金...
  • 联系方式:
  • 手机号码:
  • 联系邮箱:
  • 微信扫码联系

    微信咨询

邀请费用:面议

邀请讲课
官方电话:13810808675
http://www.zgdfzk.com/index.php/zkzj/110050.html
详细介绍

人简历

山东大学齐鲁证劵金融研究院院长
山东大学数学学院副院长

研究领域

金融数学、计量经济学、概率统计、导向随机微分方程、保险与精算、数理经济学

教育背景

1983年 毕业于山东师范大学数学系,获理学学士学位。
1988年 毕业于东华大学,获理学硕士。
1998年 毕业于山东大学,获博士学位。

学术兼职

教育部教学指导委员会统计学分委会委员
山东大学金融研究院常务副院长
加拿大 The University of Western Ontario 统计与精算科学系兼职教授
全国概率统计学会理事、全国应用统计学会常务理事

社会荣誉

国家教育部第六批“长江学者”奖励计划特聘教授
国家杰出青年科学基金获得者
国家“百千万人才工程”国家级人选
第十四届孙治方经济科学奖获得者

研究成果

论文:
[1] Z. Chen and R. Kulperger, Minimax pricing and Choquet pricing, to appear Insurance: Mathematics and Economics , 2005.
[2] Z. Chen and R. Kulperger, A stochastic competing species model and ergodicity, to appear Journal of Applied Probability, 2005.
[3] Z. Chen and R. Kulperger, Inequalities for upper and lower probabilities. Statist. Probab. Lett. Vol 73, 3(2005) 233-241.
[4] Z. Chen, T. Chen and M. Davison, Choquet expectation and Peng’s g-expectation. Annals of Probability, Vol.33, No. 3 (2005) 1179-1199.
[5] Z. Chen, R. Kulperger and G. Wei, A comonotonic theorem for BSDEs. Stochastic processes and their applications. 115 (2005) 41–54.
[6] L. Jiang and Z. Chen, A result on the probability measures dominated by g-expectation. Acta Mathematicae Applicatae Sinica, English Series,Vol. 20, No. 3 (2004) 507–512.
[7] L. Jiang and Z. Chen, ON Jensen’s inequality for g-expectation. Chin. Ann. Math. 25B, 3 (2004), 401–412.
[8] Z. Chen, R. Kulperger and J. Long, Jensen’s inequality for g-expectations Part I. C. R. Acad. Sci. Paris Sér. I Math. 337 (2003), No.11, 725-730.
[9] Z. Chen, R. Kulperger and J. Long, Jensen’s inequality for g-expectations Part II. C. R. Acad. Sci. Paris Sér. I Math. 337 (2003), No. 12.
[10] Z. Chen and L. Epstein, Ambiguity, risk, and asset returns in continuous time. Econometrica 70 (2002), No. 4, 1403—1443.
[11] Z. Chen, On existence and local stability of solutions of stochastic differential equations. Stochastic Anal. Appl. 19 (2001), No. 5, 703--714.
[12] Z. Chen and S. Peng, Continuous properties of $G$-martingales. Chinese Ann. Math. Ser. B 22 (2001), No. 1, 115--128.
[13] Z. Chen and B. Wang, Infinite time interval BSDEs and the convergence of g-martingales. J. Austral. Math. Soc. Ser. A 69 (2000), No. 2, 187--211.
[14] Z. Chen and S. Peng, A general downcrossing inequality for g-martingales. Statist. Probab. Lett. 46 (2000), no. 2, 169--175.
[15] Z. Chen, A property of backward stochastic differential equations. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 4, 483--488.
[16] Z. Chen, A new proof of Doob-Meyer decomposition theorem. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 10, 919--924.
[17] Z. Chen, Existence and uniqueness for BSDE with stopping time. Chinese Sci. Bull. 43 (1998), no. 2, 96--99.
[18] Z. Chen and S. Peng, A decomposition theorem of g-martingales. SUT J. Math. 34 (1998), no. 2, 197—208
[19] L. Jun, Z. Chen and Y. Qing, Minimum expectation and backward stochastic differential equations. (Adv. Math) 数学进展,32 (2003), 441—448.
[20] Z. Chen and X. Wang, Comonotonicity of backward stochastic differential equations. Recent developments in mathematical finance (Shanghai, 2001), 28--38, World Sci. Publishing, River Edge, NJ, 2002.
[21] Z. Chen, Generalized nonlinear mathematical expectations: the g-expectations. (Adv. Math.) 数学进展 28 (1999), no. 2, 175—180
[22] Z. Chen, Existence of solutions to backward stochastic differential equations with stopping times. 科学通报42 (1997), no. 22, 2379--2382

上一篇:陈国青

下一篇:陈孔立

快速发布需求
重新获取验证码

推荐讲师

  • 吴振宇
    国务院发展研究中心金融研究所所长 研究员
  • 宋志勇
    南开大学日本研究院院长 教授
  • 宁向东
    清华大学中国经济研究中心常务副主任
  • 汪同三
    中国社会科学院原数量经济所所长 研究员
  • 赵迎光
    韩都衣舍创始人

专家动态

联系我们
微信咨询
微信咨询
微信扫一扫